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Mode Coupling by a Longitudinal Slot for a
Class of Planar Waveguiding Structures:

Part I—Theory

PERRY F. WILSON, MEMBER, IEEE, AND DAVID C. CHANG, FELLOW, IEEE

Abstract —Coupfing between two parallel-plate waveguides is investi-

gated. Mutuaf excitation is due to a Iongitudirsaf slot in a common plate.

The introduction of reflecting boundaries paraflel to the slot rdlows one to

model a number of planar wavegniding structures featuring a common

coupfing meehasdsm. Part I of this paper details the analysis of the basic

slot scattering problem based on the singular integral equation method. If

one assumes that the slot is small, then closed-form afgehraic modal

equations follow. These modal equations are well-adapted to numerical

parametic studies.

I. INTRODUCTION

L ONGITUDINAL SLOTS can be used to transfer

energy between waveguides (directional couplers) and

to control modal properties (e.g., the ridge guide, finline,

etc.). Unlike electric current probes, slots or the equivalent

magnetic current “probes” can be fabricated in the planar

direction. Hence, slots are consistent with integrated-circuit

technology for microwave and millimeter-wave applica-

tions. An exact analysis of even simple geometries can

prove formidable, however. In treating. directional cou-

plers, electrically short slots are typically treated as radia-

tors, either via the small aperture (obstacle) theory

pioneered by Lamb [1], Rayleigh [2], [3], and Bethe [4], [5],

or by employing some dynamic modification to treat

medium to resonant length slots [6]–[13]. For slots wave-

lengths long, the fields in the two waveguide regions may

be described@ terms of the interference between a pair of

propagating system modes for the composite structure [11],

[14].

The present paper analyzes modal properties for a class

of slotted waveguide structures coupled together via a

narrow longitudinal slot. Rather than consider any specific

waveguide geometry directly, we first investigate the slot

excitation problem in isolation. Specifically, we examine

the manner in which a pair of slot-coupled, dielectric-

loaded, parallel-plate waveguides scatters an obliquely inci-

dent TEM mode. Introducing reflecting boundaries and
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Fig. 1. Planar waveguiding structures featuring longitudinal slot cou-
pling. (a) Rectangular coaxial transmission line. (b) Coupled micro-
strips. (c) Microstrip feeding an infinite half-space. (d) Shielded slotline.
(e) Coupled rectangular wavegtside and microstrip. (f) Microstrips
about a rectangular waveguide.

picturing the TEM mode as being bounced back and forth,

as well as undergoing a slot scattering, leads to a transverse

resonance description of a larger system’s modal proper-

ties. This approach is often mentioned as a method of

investigating modes in rectangular waveguides (cf. [15]),

dielectric slab guides [16], and more recently, microstrips

[17] -[19], and open dielectric waveguides [20], [21].

The types of planar structures which can be treated by

this method include, as shown in Fig. 1, the rectangular

coaxial transmission line (shielded stripline), broadwall

coupled rectangular waveguides (shielded slotline), coupled

microstrips, and coupled microstrip and rectangular wave-

guide. Each features a slot (slots) between planar sections,
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Fig. 2. The slot scattering cross section.

possibly loaded, with reflecting boundaries parallel to, and

away from, the slot. Additional structures are possible, as

will be discussed in Part II of the paper.

The method of solution is to formulate a set of integral

equations for the fields excited in the slot. The kernels

(singular) are simplified by requiring that the slot be “ nar-

row,” that is, electrically narrow and small compared to the

primary waveguide dimensions. This yields a set of ap-

proximate integral equations which may be solved in closed

form. The slot excitation is then characterized in terms of a

scattering matrix. A specific waveguide is modeled by

introducing the appropriate reflection matrix. Imposing the

transverse resonance condition then determines the proper

modal equation. The roots of these modal equations must

be found numerically. Fortunately, they are relatively sim-

ple. Thus, the present approach is well-suited to problems

where numerous parameter changes are of interest. A com-

plete modal description is not attempted here. Rather, we

restrict our attention to LSM-type modes with resonances

only in the transverse direction. -Typically, this description

covers the dominant TE, or quasi-TEM, mode. A more

general treatment is possible, but at the expense of the

simple, closed-form solution developed here. Part I of this

two-part paper presents the formal derivation leading to

the modal equation. Actual applications to waveguides like

those depicted in Fig. 1 are the subject of Part II.

II. INTEGRAL EQUATION FORMULATION

The cross section to be analyzed is depicted in Fig. 2.

The upper and lower regions will be denoted by either a

subscript or superscript j, with j = 1 referring to the upper

guide, and j = 2 the lower. Each parallel-plate region is

allowed to have an arbitrary dielectric constant c and

parallel-plate separation dj. The slot width is 2 g tir~h the

x – y coordinates as shown. All field quantities are assumed

to propagate according to exp i( kOaz – tit), where the z-

axis is along the slot center.

The incident TEM mode in region j strikes the slot at an

angle 6’,, where 6’, is measured from the x-axis. The normal-

ized propagation constant a is therefore related to 81 via

a = nj sin (7J,where nj is the refractive index. Introducing

the Fourier transform pair

~(x,y) =~~ f(~,y)e’’O~’d~=F[f]
—m

~(8,Y) = ~~~ .f(~, Y)e-’’OPxdx=l[f]f] (1)
co

removes the x-variation.

Because of the dielectric interface, it is natural to decom-

pose the fields into longitudinal section modes. In general,

both LSE and LSM modes will be present; however, be-

cause the incident fields are of the LSM type ( Hy = O), the

LSE fields will be significant only in the slot region.

Solving the appropriate wave equation in the transform

domain yields the following expressions for the primary

field components of interest here [27]:

(+)fi}j)(p, y)=i@)(B,y) (~ X}J)(D,O)XaY

-(aaz+j3aX)fi~’) (P,0)
)

(+)j~~)(~, y)=i~(])(~, y)

{(aaz+pax)~)’)(p, o)} (2)

where

coshkOu, (dj T- y)
;(J)(p, ~)=

u] sinh koujdl
(3)

and Uj’= ( az + ~ 2 – n~)1i2. The subscript t denotes the

tangential x – z plane. The signs in parenthesis refer to the

upper (j =1) and lower (j= 2) regions. Later, an a-d-

ditional sign pair will be introduced associated with x-

directed forward or backward propagation. These signs will

not be in parenthesis and the distinction should remain

apparent. It should be noted that fi~) and E}J) could be

similarly expressed; however, these components are of sec-

ondary interest here.

Before matching the fields across the slot, we may exit

the transform domain by employing the following relation-

ship :

F[(aaZ +Ba.)f] = ~vt~[fl. (4)

This result, together with a convolution theorem, i.e.,

F[~~] = ~*g, allows the above scattered fields to be written

(+) FI}J)(x, y) =i~~8(~@(J)(x - x’, y) E~J)(x’,O)XaY

)
+ -&,@(JJ(x ‘X’, y)~:)(x’, ()) dx’

o

(+) E; J)(x> Y) = ~V,~g {@(’) (-x - X’, y)~\J)(x’,O)} dx’
–~

(5)

where we have noted that both E} J)(x’, O) and H~)(x’, O)

are zero outside the slot. To avoid any ambiguity concern-

ing integrability, the tangential del operators should be

applied after the x ‘-integration and is included inside the

brackets in the H\J)(x, y) expression only for notational

simplicity.

We next wish to impose continuity across the slot.

Normally, it is sufficient to match the tangential fields.

However, as indicated by Bethe [4] and others [22]–[24], an

additional continuity condition on the normal components
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may be necessary to develop a consistent small aperture

solution. The continuity of D.v, El, and H yields the

following set of integral equations:

f&%l@ ((1) ~ –.x’)+6r2f$qx –x’)]Et(x’)xay

)+-&’t[r#+l)(x‘X’)+ #2)(X –X’)]HY(X’) dx’
o

.E, (x’)} dx’

‘2) (x) – ‘rlEy,lnc= ~r2Ey,1nc
o) (x) (6)

where all quantities are understood to be in the slot ( y = O)

and “ inc” denotes the incident fields.

The kernel @(J)(x, y) may be evaluated via a residue

calculation; deforming the path of integration into the

upper ( + forward) or lower ( – backward) half-plane yields

For large m, y:)= mn/kodJ; thus, the sum tends to-

ward the harmonic series as (x, y) -+ (O,O). This logarith-

mically singular behavior represents the dominant contri-

bution in the slot for 1x1 small and may be extracted by

adding and subtracting the asymptotic form of the series in

(7). Summing the dominant series and collecting results, we

find

of Chebyshev polynomials [25], [26]. However, if the slot is

assumed to %e small, that is, (kog)z <<1 and (g/dJ) <<1,

then in the slot (y= O) where 1x1s g, the kernel is ap-

proximately given by

( lx – X’1+ ~y)+(.D(X–XJ) = –2 ln~

)

(lo)

This “narrow slot” kernel allows the integral equations (6)

to be solved directly, thus providing closed-form expres-

sions for the desired field quantities (subject to the above

restrictions).

The logarithmic kernel (10) is encountered in various

small aperture problems (cf [25]), and experience indicates

that a suitable gap field form is a (g* – X2) - 1/2 term times

an expansion in powers of (kox)n. Physically, this accounts

for the proper edge condition. Given the above narrow slot

restrictions, it is necessary to keep only the first two terms

(n= O,1) in /cox to generate a consistent solution as well

as preserve both even and odd slot field symmetries.

The integral equations (6) apparently contain three un-

known field components: EX(X’), Hy(x’), and E=(x’).
However, the three are related via

8xEz(x) =ikoa[EX(x)- ~Hy(x)]. “ (11)

Thus, only two independent components exist. Based upon

these observations, we postulate the following solution:

/40 + Al/fox
EX(X) =

(g2 _ x2)v2

/40 + Blkox
+Hy(x) =

(g2_x2)v2

E=(x) = –ik&(A1- B1)(g2 –X2)1’2 (12)

where (11) and the edge condition E=( + g) = O have been

used to show that the leading term A. is the same for both

EX(X) and Hy(x) and that the integration constant implied

by (11) is, in fact, zero.

Substituting (10) and (12) into our integral equations (6),

and performing the integrations, yields a trio of equations

for the unknown coefficients Ao, -41, and bl, namely,

2T(C,1 + tr2)A1= ~j-2Ef/nc (X)-%lq?n.(x)

‘2) (x)+ ~OH,y,inc477aB1 = – qoHX,lnc G) (x)

[

T koy;Jjx e T mvx/dJ

–zi ~ Cosy e 1}(9)
rAAo + nkox [(crl + C,2)A1 –2a2B1]

~(j)
J

“mv/kodj “
= *(H(2~c(x)-H$~/nc(x)) (13)~=1 m

2,1

The remaining series is convergent.
where A is defined by

III. APPROXIMATE NARROW SLOT SOLUTION
A = ~Jl)2(ln2– $#)) + ~$2)2(ln2– @~2)).

The integral equations (6) are suitable for various
(14)

numerical solutions or, because of the specific kernel in- Clearly, the incident fields need to be approximated con-

volved, to an expansion of the unknown slot fields in terms sistent with the above discussion. The incident parallel-plate
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TEM modes in the transverse plane are given by

‘~’~~ (X ) = E,+e * I@&j)X

‘fl?c’(x) = $ ( * Li$’)az – aax)E,*6? + ‘kO~$)x
(15)

where EJ* denotes the magnitudes of the incident electric

fields. From (13), it follows that only the leading term in

the (kOx)” expansion for Ef~~(x) and H~J~~(x) needs to

be retained, whereas, for H~j~~(x ), the first two terms are

necessary. Thus

‘jfi??. (x ) = E,*+ EJ:

H::&c(x ) = :( E:+EI)

I&&(x) = ‘(EY -E-)+ ‘kO~~’)2(E+_E-)
~“ J J J“

(16)

Substituting (16) into (13) and solving for the coefficients

-’1o, Al, and 131, leads to the following approximate solu-
tion:

EX(X) =
i

27i-(g’-x’)1’2

{

. A$)(ET-EC) -pJ2)(EJ-Ej)

A

frl(E:+ E1-)–~r2(E:+EI)
+ ikox

~rl+ ~r2 }

Hy(x) =
ia

27Tqo(g’ – x’)’”

. AP(E:-EE)- pf2)(E:-E~)

( A

.{@:+ E;)+(E; +E;)}: (17)

A few observations are in order. The dominant logarith-
mic slot dependence, contained in A, was determined by

A. (or Hz,tiC) in (13). Therefore, the primary coupling
fields EX and HY are excited by the incident longitudinal

magnetic field. In contrast, the longitudinal electric field is

only weakly excited and, in the case of the equal dielectrics,

disappears altogether. Thus, the scattered fields are essen-

tially TE, or quasi-TE, which is not unexpected considering

the TE nature of the assumed incident field distribution.

Next, note that the distribution of the vertical electric field

about the slot gives rise to two distinct symmetries. If

E${~C(x) is indeed symmetric about the slot, i.e., El+= E,-,
then the dominant terms drop out, and coupling is achieved

via EY,inC and H x,lnc. If, however, an asymmetric distribu-
tion is the case, i.e., EJ+ # E,–, then the dominant terms

will be present and, as shall be seen in the next section, the

fields excited by the secondary (symmetric) contributions

may be neglected. Clearly, in the event E,+ = – Ej–, the

secondary terms drop out altogether. In the remaining

discussion, these two cases, symmetric and asymmetric, will

be examined separately with the emphasis on the dominant

asymmetric case.

IV. THE SCATTERED FIELDS

The slot fields (17) may now be substituted into (5) in

order to evaluate the scattered fields. Specifically, we are

interested in the parallel-plate TEM modes so it is suffi-

cient to find E$)(x, y). Defining a pair of convenient

integrals allows E~J)(x, y) to be written as follows:

(+) E$)+(x, y)

“)*( X, Y)+iko~~~’)*(x,y)} (18)= + { dxT1

where

‘f’)+ (x>Y) ‘/g I+(j)*(X-X’, Y) E.X(X’,O) dX’

~J’)*(xY)=J;g@(’)* (x-x’3Y)Ez(x’>o)d x’. (19)
–g

Recall that (+) refers to the upper/lower plate region,

whereas + indicates the x-direction of propagation. In

order to perform these integrations, the initial expression

(7) for o(J) f (x, y) will be used. Allowing the observation

point x to be outside the slot region introduces a strong

exponential decay in the summand; therefore, convergence

is no longer a problem as it was in the slot. Leaving

E,(x’, O) in terms of the known coefficients Ao, Al, BI

yields, after integration

{
‘;:)’ [AoJo(koppg)Tw(x,y)=g ‘-

“J

It would be irrelevant to retain these full expressions in

light of our previous narrow slot simplifications; thus,

terms on the order of (kog) 2, with respect to unity, maybe

immediately discarded. This yields some simplification but

an additional restriction is necessary to make the above

expressions tractable. If the reflecting walls are “ awaY”

from the slot, then the evanescent higher order parallel-plate
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Fig. 3. Schematic of a four-port scattering junction.

modes will not contribute significantly due to reflection.

Specifically, we will ignore the exponentially decaying

terms, i.e.,

Tp’(x, y) =
~ ::)djhJo(~oBJ”g)o,

< ‘(A, - B1).ll(ko&$~)g)e ‘ikOBh’)x.qjj’(x, Y) = ~od, ~p

(21)

For the dominant asymmetric case (A. # O), neglecting

terms like (keg) 2 and taking the proper x-derivative in

(18) gives

(+)q’)’(x,y)+fi
OJ

. [B$)(EJ- E; )-&$2)(EJ - E;)] e *ikO@’x. (z?)

In the symmetric case (A. = O), the analogous result turns

out to be

(+) E~’)*(x, y)=
i~2(kog)2

Y~ow~J ( ~rl + ~,2 )

{[2 C,JC,1– a2(<,1+q.2)] (E: + E:)

+ [2 C,J6,2 – ~2(%1 +%2)]

(E;+ E~)}~*i’Op$’)X. (23)

The justification for neglecting the symmetric contribution

when the asymmetric slot fields are excited is now apparent

and amounts to the condition that

[01
–1

(kog)2 < in $ .

V. SCATTERING MATRICES

A four-port network may be represented schematically

as shown in Fig. 3. A scattering matrix S relates the input

(A), and output (B) wave amplitudes via B =-SA, where A

and B are normalized such that input and output powers

are given by AA* and BB *, respectively. The results of the

previous sections may be used to characterize the slot

coupling in terms of such a scattering matrix.
Begin with the incident fields (15) which determine A;

the power carried in the transverse plane by the various

TEM modes is

~,(j) * = + fi$J)dj + 2

mc
- zpEJ-l “

(24)

Normalizing, according to

()B($J)dj 1’2E*~J* . —
2rfo J

(25)

so that the proper power relation holds implies that al = e:,

az = el, a~ = e;, and a4 = e;.

Consider next the scattered TEM mode for the asymmet-

ric case; from (22) it follows that the transverse power is

given by

,(,)+=+!5++2
s – 2TJ0 2kodjA

Thus, analogous to (25), we may define a set of normalized

scattered wave amplitudes

()
1/2

izf3$J) dJ
e:’) * = 7 2kodjA 2TIO/3$J)

. [P~IJ(E:-E:)-pj2)(EJ-Ej)] (27)

where care has been taken to preserve the various polarities

implied by (22). In terms of the normalized incident wave

amplitudes e,+, the scattered wave amplitudes are given

-(%)’’2(eJ-e’28)
where

—i7r~&)

8’= 2kodjA “
(29)

This implies that bl = e:’, b2 = e+’, etc., and it follows

from the definition of the al that the asymmetric scattering

matrix S(0) is

\ —c 1+82 +1
1 : Because (28) only accounts for thewhere c = (8182) / .

scattered waves excited by the slot, the unscattered inci-

dent fields must also be included, which accounts for the

1 + C3joff-diagonal terms. In a precisely analogous fashion,

the symmetric case scattering matrix S(’) is found to be

/ P, l+pl –u –u \

~(e) = l+P1 P1 –u –u

l+p2
(31)

—u —o P2

\ ‘o ‘u 1+~2 P2 J
where the following auxiliary quantities have been defined:

pJ =;J[2C; - (X2(6.,+ %.2)]

(32)
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Notice that both matrices are symmetric as expected for

a reciprocal network, and that the cross-coupling coeffi-

cients c1 and u feature the individual guide parameters in a

balanced fashion. The matrices are unitary [27] which

reflects a lossless junction.

VI. THE MODAL EQUATIONS

The modal equations for two waveguiding structures

coupled by a narrow longitudinal slot may now be consid-

ered. In order to model a particular waveguide, a reflection

matrix r must be specified which characterizes the

boundaries to the parallel-plate sections. The requirement

of constructive interference leads to a transverse resonance

condition, namely,

da(I-rs)=o. (33)

Specifically, if we let the reflections undergone by back-

ward and forward waves be denoted rJ+ and r]–, respec-

tively, then r is a simple diagonal matrix.

In the dominant slot coupled case, with S(0) given by

(30), the transverse resonance condition (33) implies that

- (1+ a,)r~ 1 + air;
det

~r2– — ~rz–

— ~rz+ ~rz+

Solving yields a modal equation which may be formally

written as

F1F2 – S182G1G2r1- rz- = O (35)

where

~ = (I+ t3,rJ-)G, –(1– r,-)zrj+

G,,= r,’ i-r,- – 2rJ’ r,- (36)

Although this is the desired result for the asymmetric

case, the dependence on a is less than clear. Therefore,

some further simplification is beneficial. Referring to Fig.

4, the reflections may be represented in an exponential

form

rj* = ~1(+,* +,) (37)

where $ = 2kol?~j)lj – x,(a) accounts for propagation to

and from the slot center plus any phase change x,( a) at

the reflecting boundary, and +J = 2ko~jJJ off j com-

pensates for an off-center slot. After some manipulation,

the substitution of (37) into the modal equation (35) yields

r 1)10

koy:)d – ; =
J

(38)

Fig. 4. Slot scattering cross section.

For the special case of equal (c,l = cr2 = (, dl = dz = d,

etc.) guides about a centered slot (+ ~= 42 = O), the modal

equation reduces to

‘m%td)}=o‘3’)
The symmetric case may be similarly analyzed. Because

the vertical electric field is required to be laterally symmet-

(34)

ric about the slot, we have by default that 1“+ = rj- = rJ

and that t)J = O. One finds that

(1+ rl)(l+ r2)[(l - r,)(l-r,)-2p1r1(l - r,)

–2p2r2(l– r,)] = o. (40)

No form equivalent to (38) is readily available, although

one may result if the proper (negligible) terms of order

(keg)’ are added. For identical guides (r, = r2. = r, etc.),

the symmetric case modal equation reduces to

sin2+-i%l=Oo(41)

A few special cases may now be considered. In the case

of no slot (g = O or no coupling), both cases reduce to

sin$l sinrp2 = O (42)

where the slot location is now irrelevant ($ ~= $Z = O). The

roots to sin @j = O generate the unperturbed TEMO modes in

the respective guides. Familiarity with these simple solu-

tions often helps to identify the basic nature of a slot

perturbed mode.

As g ~ O, the asymmetric modal equation is asymptotic

to

Setting the term in parenthesis to zero yields a solution for

a which tends toward
2 1/2

()

n:+n2

a!- —
2“

(44)
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This is recognized as the zeroth-order solution for propa-

gation along a slotline (cf [28]), as well as the familiar

result due to Coleman [29] for the dual problem of a

narrow conducting strip between two dielectric media. In

essence, as the slot width decreases, the fields become

tightly bound to the slot and are no longer affected by the

outer conductors, thus the slot line behavior.

VII. CONCLUSION

The mutual excitation between a pair of parallel-plate

waveguides has been analyzed taking advantage of the

restriction that the slot (the coupling mechanism) be rmr-

row. The primary results are modal equations valid for a

variety of p$mar waveguide structures. This building block

approach is both simple and flexible. The second part of

this paper applies the above canonical problem to some

novel coupling schemes and waveguide structures.
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