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Mode Coupling by a Longitudinal Slot for a
Class of Planar Waveguiding Structures:
Part I—Theory

PERRY F. WILSON, MEMBER, IEEE, AND DAVID C. CHANG, FELLOW, IEEE

Abstract —Coupling between two parallel-plate waveguides is investi-
gated. Mutual excitation is due to a longitudinal slot in a common plate.
The introduction of reflecting boundaries parallel to the slot allows one to
model a number of planar waveguiding structures featuring a common
coupling mechanism. Part I of this paper details the analysis of the basic
slot scattering problem based on the singular integral equation method. If
one assumes that the slot is small, then closed-form algebraic modal
equations follow. These modal equations are well-adapted to numerical
parametric studies.

1. INTRODUCTION

ONGITUDINAL SLOTS can be used to transfer

energy between waveguides (directional couplers) and
to control modal properties (e.g., the ridge guide, finline,
etc.). Unlike electric current probes, slots or the equivalent
magnetic current “probes” can be fabricated in the planar
direction. Hence, slots are consistent with integrated-circuit
technology for microwave and millimeter-wave applica-
tions. An exact analysis of even simple geometries can
prove formidable, however. In treating_directional cou-
plers, electrically short slots are typically treated as radia-
tors, either via the small aperture (obstacle) theory
pioneered by Lamb [1], Rayleigh [2], [3], and Bethe [4], [5],
or by employing some dynamic modification to treat
medium to resonant length slots [6]-[13]. For slots wave-
lengths long, the fields in the two waveguide regions may
be described in terms of the interference between a pair of
propagating system modes for the composite structure [11],
[14].

The present paper analyzes modal properties for a class
of slotted waveguide structures coupled together via a
narrow longitudinal slot. Rather than consider any specific
waveguide geometry directly, we first investigate the slot
excitation problem in isolation. Specifically, we examine
the manner in which a pair of slot-coupled, dielectric-
loaded, parallel-plate waveguides scatters an obliquely inci-
dent TEM mode. Introducing reflecting boundaries and
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Fig. 1. Planar waveguiding structures featuring longitudinal slot cou-
pling. (a) Rectangular coaxial transmission line. (b) Coupled micro-
strips. (¢) Microstrip feeding an infinite half-space. (d) Shielded slotline.
(e) Coupled rectangular waveguide and microstrip. (f) Microstrips
about a rectangular waveguide.

picturing the TEM mode as being bounced back and forth,
as well as undergoing a slot scattering, leads to a transverse
resonance description of a larger system’s modal proper-
ties. This approach is often mentioned as a method of
investigating modes in rectangular waveguides (cf. [15]),
dielectric slab guides [16], and more recently, microstrips
[171-[19], and open dielectric waveguides {20], [21].

The types of planar structures which can be treated by
this method include, as shown in Fig. 1, the rectangular
coaxial transmission line (shielded stripline), broadwall
coupled rectangular waveguides (shielded slotline), coupled
microstrips, and coupled microstrip and rectangular wave-
guide. Each features a slot (slots) between planar sections,
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Fig. 2. The slot scattering cross section.

possibly loaded, with reflecting boundaries parallel to, and
away from, the slot. Additional structures are possible, as
will be discussed in Part II of the paper.

The method of solution is to formulate a set of integral
equations for the fields excited in the slot. The kernels
(singular) are simplified by requiring that the slot be “nar-
row,” that is, electrically narrow and small compared to the
primary waveguide dimensions. This yields a set of ap-
proximate integral equations which may be solved in closed
form. The slot excitation is then characterized in terms of a
scattering matrix. A specific waveguide is modeled by
introducing the appropriate reflection matrix. Imposing the
transverse resonance condition then determines the proper
modal equation. The roots of these modal equations must
be found numerically. Fortunately, they are relatively sim-
ple. Thus, the present approach is well-suited to problems
where numerous parameter changes are of interest. A com-
plete modal description is not attempted here. Rather, we
restrict our attention to LSM-type modes with resonances
only in the transverse direction.- Typically, this description
covers the dominant TE, or quasi-TEM, mode. A more
general treatment is possible, but at the expense of the
simple, closed-form solution developed here. Part I of this
two-part paper presents the formal derivation leading to
the modal equation. Actual applications to waveguides like
those depicted in Fig. 1 are the subject of Part II.

II. INTEGRAL EQUATION FORMULATION

The cross section to be analyzed is depicted in Fig. 2.
The upper and lower regions will be denoted by either a
subscript or superscript j, with j =1 referring to the upper
guide, and j=2 the lower. Each parallel-plate region is
allowed to have an arbitrary dielectric constant ¢, and
parallel-plate separation d,. The slot width is 2g with the
x—y coordinates as shown. All field quantities are assumed
to propagate according to expi(k,az — wt), where the z-
axis is along the slot center.

The incident TEM mode in region j strikes the slot at an
angle 6, where 6, is measured from the x-axis. The normal-
ized propagation constant a is therefore related to 6, via
a=n,sinf, where n; is the refractive index. Introducing
the Fourier transform pair

1oy = [ F(B.y)e" = ap = F ]

B =52 [ sy an=F1 ) ()

removes the x-variation.
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Because of the dielectric interface, it is natural to decom-
pose the fields into longitudinal section modes. In general,
both LSE and LSM modes will be present; however, be-
cause the incident fields are of the LSM type (Hy = 0), the
LSE fields will be significant only in the slot region.
Solving the appropriate wave equation in the transform
domain yields the following expressions for the primary
field components of interest here [27]:

(£)BD(B.y)=i8(8. )| 2B (B.0)xa,

- (aa, + pa,) B (5.0)

(£)EN(B,y)=idp(B, y)
{(aa, +Ba,)-EP(B,0)}  (2)

where

coshkouj(a’j—Ty)
u sinhkou d,

(3)

and u, = (a+ B2—n2)/2 The subscript ¢ denotes the
tangential x—z plane. The signs in parenthesis refer to the
upper (j=1) and lower (j=2) regions. Later, an ad-
ditional sign pair will be introduced associated with x-
directed forward or backward propagation. These signs will
not be in parenthesis and the distinction should remain
apparent. It should be noted that I?y(f ) and E{ could be
similarly expressed; however, these components are of sec-
ondary interest here.

Before matching the fields across the slot, we may exit
the transform domain by employing the following relation-
ship:

¢V (B, y)=

o —i -
F[(aa,+Ba,)f] -, VFI/ ] (4)
Thi§ result, together with a convolution theorem, i.e.,
F[fg]= f*g, allows the above scattered fields to be written

€r
() (x, ) =i (L6 (x= 2, ) B (3, 0)xa,
~g\ Mo

+ kLv,qb(f)(x - x’, y)Hy(”(x’,O)} dx’
0
1 g
(£)EL (%, 9) =1V, f (89(x =5 »)ED(x',0)} dx’
- £

(5)

where we have noted that both E{’(x’,0) and H)(x’,0)
are zero outside the slot. To avoid any ambiguity concern-
ing integrability, the tangential del operators should be
applied after the x’-integration and is included inside the
brackets in the H)(x, y) expression only for notational
simplicity.

We next wish to impose continuity across the slot.
Normally, it is sufficient to match the tangential fields.
However, as indicated by Bethe [4] and others [22]-[24], an
additional continuity condition on the normal components
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may be necessary to develop a consistent small aperture
solution. The continuity of D, E, and H yields the
following set of integral equations:

ifg {l [e,1¢>(1)(x - X’)+€,.2¢(2)(x - x/)]Et(x’)Xay
—¢g\ Mo

#0600~ x) 62 (e X)) ()|
- B3 (x)-
27" {lea =)=

-Et(x/)} dx’
=€, E)Szmc(x)_( Ey mc(x) (6)

where all quantities are understood to be in the slot (y = 0)
and “inc” denotes the incident fields.

The kernel ¢()(x, y) may be evaluated via a residue
calculation; deforming the path of integiation into the
upper (+ forward) or lower (—backward) half-plane yields

HS(x)

, i
¢(J)i(x,y)=-’;-(%
J

e;tik(,/igﬂ mmy exkoymx
S Z 08T
Boj =1 J ij

(7)

where

2 1/2
= ( ma ) — B

J

b

(8)

For large m, v’ =mmn/kd; thus, the sum tends to-
ward the harmonic series as (x y) — (0,0). This logarith-
mically singular behavior represents the dominant contri-
bution in the slot for |x| small and may be extracted by
adding and subtracting the asymptotic form of the series in
(7). Summing the dominant series and collecting results, we
find

ikod,

im | et koBYx
¢(1)+(x y) k d { Bé") "

kd 1n(2coshd 2cos%))j)]

J J

e Fhovix o F mmx/d

}} (9)

.Yrslj) - mar/kod

—2i Y cos m‘;ry[
m=1 J

The remaining series is convergent.

II1. APPROXIMATE NARROW SLOT SOLUTION

The integral equations (6) are suitable for various
numerical solutions or, because of the specific kernel in-
volved, to an expansion of the unknown slot fields in terms
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of Chebyshev polynomials {25], [26]. However, if the slot is
assumed to be small, that is, (k,g)* <1 and (g/d) <1,
then in the slot (y =0) where |x| < g, the kernel is ap-
proximately given by

¢ (x—x') ~ —é{ln% n qt,g)j)}

N & a 1 im

L S| ked P M| 2ked B

(10)
This “narrow slot” kernel allows the integral equations (6)
to be solved directly, thus providing closed-form expres-
sions for the desired field quantities (subject to the above
restrictions).

The logarithmic kernel (10) is encountered in various
small aperture problems (cf [25]), and experience indicates
that a suitable gap field form is a (g2 — x?) /2 term times
an expansion in powers of (k,x)”. Physically, this accounts
for the proper edge condition. Given the above narrow slot
restrictions, it is necessary to keep only the first two terms
(n=0,1) in ky,x to generate a consistent solution as well
as preserve both even and odd slot field symmetries.

The integral equations (6) apparently contain three un-
known field components: E (x"), H,(x’), and E(x").
However, the three are related via

Ex) = ikea| E(x)-RE, (0] (1)

Thus, only two independent components exist. Based upon
these observations, we postulate the following solution:

Ay + A kyx

E.(x)= (g02 12)2/2

i Ay + Bikyx

FOHJ/( )= (goz 12)?/2
Ez(x)=—ik§a(A1—Bl)(g2 x2)1/2 (12)

where (11) and the edge condition E,(+ g) =0 have been
used to show that the leading term A4 is the same for both
E,(x) and H (x) and that the integration constant implied
by (11) is, in fact, zero.

Substituting (10) and (12) into our integral equations (6),
and performing the integrations, yields a trio of equations
for the unknown coefficients 4,, 4;, and b;, namely,

2"77'(€r1 + Er2)Al = €r2E)§21nc(x)_ €rlE)Ell)nc(x)
4'”0‘B1 - nOH‘Szznc(x)+ ’noH,g 2nc(x)
TAAy+ wkox (€, + e,z)A1 —2a’B,]

2 (He(x) - HOu(x))  (13)

where A is defined by
A= B (02— ¢0)+ B (In2— ¢@).  (14)

Clearly, the incident fields need to be approximated con-
sistent with the above discussion. The incident parallel-plate
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TEM modes in the transverse plane are given by

EW* (x) = Ejie + kB x

y.nc

HQ(x) = (£ BP0, — aa ) Efe ol (15)
where E* denotes the magnitudes of the incident electric
fields. From (13), it follows that only the leading term in
the (kox)” expansion for EX)/(x) and H{):(x) needs to
be retained, whereas, for H{J) (x), the first two terms are
necessary. Thus

EN(x)=E'+E;

y,inc

HW

c,me

(x)z;—:(Ef +E)

HW

z,1nc

W _ ik xlg(j)z -
(x)z%(E;—E )J+—=—(E'-E).

J nO J J
(16)
Substituting (16) into (13) and solving for the coefficients
Ay, 4y, and B, leads to the following approximate solu-
tion:
i

E, (x)=
27r(g2—x2)1/2
BV (BT — Ei ) BP(ES — E;)
A
b (B B ) e (B + E7)
0 €rl-l_ErZ
ia
H,(x)=
Y 2777]0(8‘2—)(2)1/2
[ BEO(ES — E7 ) -BP(ES — E7 )
A
E'+E[)—(ES+E;
+ik0x( 1 E1)2( 2 2)}

_ ik (e1—€,) 2 2\1/2
E(x)=—> (afes) 8 %)

(B + E7 )+ (ES + Ey)). (17)

A few observations are in order. The dominant logarith-
mic slot dependence, contained in A, was determined by
Ay (or H, ;) in (13). Therefore, the primary coupling
fields E, and H, are excited by the incident longitudinal
magnetic field. In contrast, the longitudinal electric field is
only weakly excited and, in the case of the equal dielectrics,
disappears altogether. Thus, the scattered fields are essen-
tially TE, or quasi-TE, which is not unexpected considering
the TE nature of the assumed incident field distribution.
Next, note that the distribution of the vertical electric field
about the slot gives rise to two distinct symmetries. If
E) (x) is indeed symmetric about the slot, i.c., E F=E,
then the dominant terms drop out, and coupling is achieved
via E, ;. and H, . If, however, an asymmetric distribu-
tion is the case, i.c., E’+ E, then the dominant terms
will be present and, as shall be seen in the next section, the
fields excited by the secondary (symmetric) contributions
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may be neglected. Clearly, in the event E;" = — E’, the
secondary terms drop out altogether. In the remaining
discussion, these two cases, symmetric and asymmetric, will
be examined separately with the emphasis on the dominant
asymmetric case.

IV. THE ScATTERED FIELDS

The slot fields (17) may now be substituted into (5) in
order to evaluate the scattered fields. Specifically, we are
interested in the parallel-plate TEM modes so it is suffi-
cient to find E()(x, y). Defining a pair of convenient
integrals allows E{/)(x, y) to be written as follows:

(£)EP*(x,y)

= 5 (070 (5, ) ke T (x,9)) (18)
where

T (x, y) =fg ¢(/')i(x—x’, y)Ex(x’,O) dx’
-z

Tzwi(x,y):/g ¢V (x—x, y)E,(x’,0) dx’. (19)
- &

Recall that (+) refers to the upper/lower plate region,
whereas + indicates the x-direction of propagation. In
order to perform these integrations, the initial expression
(7) for ¢ % (x, y) will be used. Allowing the observation
point x to be outside the slot region introduces a strong
exponential decay in the summand; therefore, convergence
is no longer a problem as it was in the slot. Leaving
E,(x’,0) in terms of the known coefficients Ay, Ay, By
yields, after integration

ir2 [ e +1ko B x
kod, B

T1(j)i(st’)= [Aojo(ko éj)g)
+ ikogA1J1(ko.3(§j)g)]

- m
-2i ¥ cos 2T

m=1 dj
Fakoy§ x
£ N0 [AOIO(koygf)g)ikOgAlll(koy;/)g)]}
0

e* zkoﬁ{]/)x

Can?
TV (x, y) = _kod.kog(Al—Bl){“/g(m Ji(koBV%)
J 0

= muy e Fkoty’x
—2i )}, cos—; Tll(kov,ff’g) . (20)
m=1 J ™

It would be irrelevant to retain these full expressions in
light of our previous narrow slot simplifications; thus,
terms on the order of (k,g)?, with respect to unity, may be
immediately discarded. This yields some simplification but
an additional restriction is necessary to make the above
expressions tractable. If the reflecting walls are “away”
from the slot, then the evanescent higher order parallel-plate
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Fig. 3. Schematic of a four-port scattering junction.

modes will not contribute significantly due to reflection.
Specifically, we will ignore the exponentially decaying
terms, i.e.,

T (x, 7) = o [ Aodo(kobSs)

B(/)d
T ikoghy(koBS)g )] e * Foht'x

l)Jl(

N E 01'172 k g
T (x, y) = 7— =2 (4,

(j) + ik ﬁbﬁx
kod, B2 g)e o,

(21)

For the dominant asymmetric case (A4, # 0), neglecting
terms like (k,g)? and takmg the proper x-derivative in
(18) gives

= g7
(i)Ey (x,y) +2k0de

[BO(ES — BT )= BP(E5 — By )] e ™= (22)

In the symmetric case (A4, = 0), the analogous result turns
out to be

in?(kog)*

§7d, (€41t €,2)

(26t (e s )| (5 + )

+ [2(,Je,2 —a*(e, + 6,2)]

(E5 + Ey )} e*ikobis, (23)

The justification for neglecting the symmetric contribution
when the asymmetric slot fields are excited is now apparent
and amounts to the condition that

o <[uf 2]

V. SCATTERING MATRICES

(£)EQ(x,7) =

A four-port network may be represented schematically
as shown in Fig, 3. A scattering matrix S relates the input
(A), and output (B) wave amplitudes via B =S4, where 4
and B are normalized such that input and output powers
-are given by A4* and BB*, respectively. The results of the
previous sections may be used to characterize the slot
coupling in terms of such a scattering matrix.

Begin with the incident fields (15) which determine A4;
the power carried in the transverse plane by the various
TEM modes is

85",
PY* = £ B (29)
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Normalizing, according to

AN
et= 4 25
( 27, ( )

J
so that the proper power relation holds implies that a; = e7,
a,=e;, a;=e,,and a,=e;.
Consider next the scattered TEM mode for the asymmet-
ric case; from (22) it follows that the transverse power is
given by

+
EJ

B> :

J
21,
[B(EL - E7)-BP(E5 - E5)]". (26)

Thus, analogous to (25), we may define a set of normalized
scattered wave amplitudes

PDE=4

2kod,A

St T T éJ) d, 172
: 2kod;A | 29,88
[BO(ES — ET)-BP(ES — By )] (27)

where care has been taken to preserve the various polarities
implied by (22). In terms of the normalized incident wave
amplitudes e ji, the scattered wave amplitudes are given

d. \V? @12
0 _
o-safgs) 5] -
@\1/2
(&) e e
where
_—iw,Béj)
6J————-—2k i (29)

This implies that b, =e!* b, =e¢!", etc, and it follows
from the definition of the a, that the asymmetric scattering
matrix S© is

-8, 1+8, ~—e¢ €
1+6 -8 € —¢€
©) 1 1
S —€ € -8, 1+, (30)
€ - 1+68, -9,

where ¢ =(8;8,)'/% Because (28) only accounts for the
scattered waves excited by the slot, the unscattered inci-
dent fields must also be included, which accounts for the
1+ 6 off-diagonal terms. In a precisely analogous fashion,
the symmetnc case scattering matrix S is found to be

Py 1+p;, -o -0

G- 1+p, P1 -0 -0 (31)
kY Y P 1+p, ‘
-0 -0 1l+p, p,

where the following auxiliary quantities have been defined:
o, = gj [2€31 - a2(€r1 + €r2)]
o= (§1§2)1/2[2€r1€r2 —a(eq+ €r2)]

- i"’(kog)z
8k0d,/8(§j)(€r1 +e€,,) .

g‘j = (32)
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Notice that both matrices are symmetric as expected for
a reciprocal network, and that the cross-coupling coeffi-
cients ¢; and o feature the individual guide parameters in a
balanced fashion. The matrices are unitary [27] which
reflects a lossless junction.

VI

The modal equations for two waveguiding structures
coupled by a narrow longitudinal slot may now be consid-
ered. In order to model a particular waveguide, a reflection
matrix I' must be specified which characterizes the
boundaries to the parallel-plate sections. The requirement
of constructive interference leads to a transverse resonance
condition, namely,

THE MopDAL EQUATIONS

det(I-TS)=0. (33)
Specifically, if we let the reflections undergone by back-
ward and forward waves be denoted I, and I, respec-
tively, then I is a simple diagonal matrix.
In the dominant slot coupled case, with S© given by
(30), the transverse resonance condition (33) implies that

1+,  —(1+8)T}
—-(1+8,)T, 1+ 8,1,
det _ _
el; —el;
— €P2+ EF;

Solving yields a modal equation which may be formally
written as

F,F, — 8,8,G,G,T; T; =0 (35)

where
Fj‘ = (1+ 8/111— )Gj _(1_ I‘; )2I‘j+

=T+ I 20T (36)

Although this is the desired result for the asymmetric
case, the dependence on « is less than clear. Therefore,
some further simplification is beneficial. Referring to Fig.
4, the reflections may be represented in an exponential
form

I‘ji =% t¥) (37)
where ¢, = 2k,B§"I, — x (a) accounts for propagation to
and from the slot center plus any phase change x («) at
the reflecting boundary, and y, = 2k,B{"off; com-
pensates for an off-center slot. After some mampulation,
the substitution of (37) into the modal equation (35) yields

7 [ B .
5{ ko sing,(cos ¢, — cos ;)
B0
+ kod, sin g, (cos ¢, — cos 1[/2)}

[oe]

~ sin¢, sin¢, Z B§” (ln—j+ Z [

j=1

1
O-Y(J)d B E]) =0.
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Fig. 4. Slot scattering cross section.

For the special case of equal (e ,=¢,=¢,d,=d,=d,
etc.) guides about a centered slot (Y, = {, = 0), the modal
equation reduces to

¢ 2d

+2,BO

+ mi;l[kozmd - %])} =0. (39)

The symmetric case may be similarly analyzed. Because
the vertical electric field is required to be laterally symmet-

B, sin ¢{ — tan =

el —el[
—el [~ I~
L ooy, (34)
146, —-(1+6,)T;
—-(1+8,)Ty 1+8,I5

ric about .the slot, we have by default that T;" =T, =T,
and that ¥, = 0. One finds that

(1+T)(A+T0)[(1-T)(A-T;)~20,[,(1-T;)
—2p,,(1- Fl)] =0. (40)

No form equivalent to (38) is readily available, although
one may result if the proper (negligible) terms of order

(k,g)* are added. For identical guides (I', =T, =T, etc.),
the symmetric case modal equation reduces to
4pT
-sin ¢[1—T—r]—o. (41)

A few special cases may now be considered. In the case
of no slot (g =0 or no coupling), both cases reduce to

(42)

where the slot location is now irrelevant (, =y, = 0). The
roots to sin¢; = 0 generate the unperturbed TE,,, modes in
the respective guides. Familiarity with these simple solu-
tions often helps to identify the basic nature of a slot
perturbed mode.

As g — 0, the asymmetric modal equation is asymptotic
to

sing, sing, =0

2d,
T

g

sin¢1sin¢2{ D% In =71 + 8@ In 2‘;2} =0. (43)

Setting the term in parenthesis to zero yields a solution for
a which tends toward

n%-!-n% 172
o~ .
2

(44)
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This is recognized as the zeroth-order solution for propa-
gation along a slotline (cf [28]), as well as the familiar
result due to Coleman [29] for the dual problem of a
narrow conducting strip between two dielectric media. In
essence, as the slot width decreases, the fields become
tightly bound to the slot and are no longer affected by the
outer conductors, thus the slot line behavior.

VIL

The mutual excitation between a pair of parallel-plate
waveguides has been analyzed taking advantage of the
restriction that the slot (the coupling mechanism) be nar-
row. The primary results are modal equations valid for a
variety of planar waveguide structures. This building block
approach is both simple and flexible. The second part of
this paper applies the above canonical problem to some
novel coupling schemes and waveguide structures.

CONCLUSION
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